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Properties of magnetic thin films are of considerable interest both for applied as well as theoretical reasons.
I study the behavior of Ising thin films through the use of layered Bethe lattices and Husimi trees. In particular
the behavior of the critical temperature both as a function of the number of layers and as a function of variable
magnetic moments of surface spins is presented. The later is motivated by that fact that such variation has been
found to occur in physical systems such as Ni and Fe free surfaces and Ni/Co interfaces. The approach used
is more accurate than many previously used and most importantly shows a different qualitative behavior of the
critical temperature from previous studies.
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I. INTRODUCTION

The magnetic properties of thin films have been of con-
siderable interest for some time due to both the extremely
important practical applicationsssee f1,2g, and references
thereind and as well as fundamental theoretical questions re-
lated to themsseef3,4g, and references thereind.

On the theoretical side, Ballentinef5g, who estimated the
critical temperature of a bilayer Ising model, began to study
the critical phenomena of layered systems. Since then many
extensions and variations of this very simple system have
appeared, with many of these of interest because of their
relation to specific physical systems. One such extension in-
volves systems where the magnetic moments of the surface
spins differ from that of nonsurface spins. It has been shown
by Jensen, Dreysse, and Bennemannf6g that several physical
systems appear to have layer-dependent magnetic moments.
They have studied by mean-field theory some of the effects
these variations have on the critical properties of these sys-
tems. More recently Ilkovicf7g, using a reaction field ap-
proximation, has looked at similar systems.

The present paper focuses on the cases studied inf6,7g.
The method used here to study such systems is an extension
of one used by the present authorf8g and, in a slightly less
general manner, by Hu, Izmailian, and Oganesyanf9g to ap-
proximate the bilayer Ising spin system. The method consists
of a dynamical systems approach to obtain the critical tem-
perature of a system of layered Bethe lattices or Husimi
trees. One obtains a Bethe-like approximation and such ap-
proximations, as pointed out inf10g, produce an approxima-
tion generally more accurate than that of the mean-field ap-
proximation shereafter MFAd. That this is the case is of
particular interest here in that our approximation, while giv-
ing generally more accurate quantitative results, also differs
qualitatively in one important aspect from what has been
found previously. This difference and the comparison of our
results to previous results is given in Sec. III after presenting
in Sec. II notation and details of the models. Conclusions
along with possible other avenues of interest are presented in
Sec. IV.

II. MODEL & GENERAL METHOD OF STUDY

I consider Ising model systems where the generic Hamil-
tonian of the system is

H = − Jo
ki,jl

sisj − ho
i

si , s1d

with si the spin variable on theith site andsi = ±1 ffor this
particular study this will not be the case for surface sitesssee
belowdg. The first sum is over all nearest-neighbor pairs and
the second sum is over all sites. For simplicity,J, as well as
the Boltzmann constant,k, will be set equal to one. Only
ferromagnetic systems will be considered here, in which case
a phase transition occurs only forh=0.

Ideally I would like to directly considern layers of a
square lattice, Ising model. However, even for the bilayer
system, one is forced to use various approximation methods.
In the following this will be done primarily by considering
an extension of the usual Bethe lattice approach which con-
sists of looking at an Ising model system on a Cayley tree
with branching ratiog. To approximate the thin film system
of n layers I taken Bethe lattices and couple them together
with interlayer interactions. Previously this has been done
only for the case ofn=2 f6,9g. This is the primary approxi-
mation shereafter denoted BLAd used in this paper to ap-
proximate ann-layered system.

As stated earlier using the BLA compared to the MFA,
one expects a better approximation. However, a still better
approximation can be obtained by using what is known as an
Husimi tree approachshereafter HTAd The simplest Husimi
tree for approximating a square lattice system can be con-
structed in the following manner. Begin with a four-site sys-
tem with the sites on the corners of a square. Now on each of
the corners attach another four-site square system, and then
on the new corners attach still other four-site square systems.
Continue doing this infinitely many times. This system
would then approximate a square lattice Ising model and this
HTA is a better approximation than the BLA to the square
lattice Ising modelf11g. One would expect this improvement
could carry over as well to then-layer systems.

For the BLA there are a number of techniques that allow
one to obtain the critical temperature,Tc. One such technique
involves a dynamical system approach. This was presented
for a single-layer Bethe lattice system by Eggarterf12g and
has been extended and used in connection with single-layer
Husimi trees by the present author to look at multisite inter-
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action systemsf15g, frustrated systemsf16g, and higher spin
systemsf17,18g, etc. Just as a single-layer system, whether
using a Bethe lattice or Husimi tree, can be thought of as
being built up in a step-by-step fashion resulting in a discrete
dynamical system, so can ann-layer system. Since the basic
method is presented in numerous previous papers, see e.g.,
f13–15g, it has not been presented here. Here I look atn, n
ù2, layers of Bethe lattices or Husimi trees.

The mathematical mechanism present in this approach,
which corresponds to the occurrence of a phase transition for
the layered systems, is the same as it is for other ferromag-
netic systems studied in the past, see Sec. II of Ref.f13g. At
high temperatures there is a single, attracting, real-valued,
fixed point that corresponds to the disordered state. As the
temperature is lowered, one reaches a point where this fixed
point becomes repelling and two new, attracting, fixed points
are created, one corresponding to a positive and one to a
negative spontaneous magnetization. The temperature at
which this changeover occurs isTc, and can be found to
arbitrary numerical precision using a program such as
MATHEMATICA . Here MATHEMATICA not only constructs the
dynamical system but finds the fixed points and determines if
they are repelling or attracting by constructing the Jacobian
of the dynamical system.

III. VARIATION OF BOTH SURFACE
MAGNETIC MOMENTS

In this section results are presented where following
Jensen, Dreysse, and Bennemannf7g, the magnetic moments
of the spins on both surfaces of ann-layer system take on the
values ±a as opposed to all other spins which take on the
values ±1.

In Fig. 1 are plotted theTc values as a function ofa for
systems consisting ofn-layered Bethe lattices withg=3 and
2ønø6. This figure should be compared to Fig. 8 off7g,
which shows results using the reaction field approximation
shereafter RFAd for n-layered systems withn=3, 5, and 10.
Their variabler is equivalent to my variablea. The results in
f7g are for a layered face-centered cubic lattice rather than

the layered simple cubic lattice studied here; nevertheless
qualitatively the two figures look identical. Specifically one
sees, ifa is less than some value, what I will temporarily
denote asac, that Tc increases asn increases, while fora
.ac, the opposite occurs. They are not, however, qualita-
tively the same. The difference will be presented after dis-
cussion of the more obvious similarities.

To gain some perspective on the accuracy of the results
one can begin by looking at the value ofTc at ac. This value
of Tc is the approximation’s equivalent to the critical tem-
perature of the bulk system since atac increases in the num-
ber of layers have no effect onTc. As stated the system
studied inf8g is a slice of the fcc lattice. Here for nonsurface
sites there are 12 nearest-neighbor sites and for the bulk sys-
tem the MFA givesTc=12. As Ilkovic points out inf8g the
RFA is an improvement over the MFA. The MFA of theTc
can be shown rigorously to be an upper bound on the true
critical temperaturef17g. The reaction field approximation at
ac givesTc=10.898f8g while series expansion result forTc
for the bulk areTc>9.796f18g with an 11.2% difference. In
the case of a simple cubic lattice the MFA givesTc=6. A
crude reading of Fig. 1 givesTc>4.79 and the series expan-
sion estimates for this system givesTc>4.511f18g the latter
two differing by only 6.2%.

It is worth noting here that Lin, Che, and Xiaf19g at-
tribute to Allan f20g a Bethe approximation for then-layer
system of square lattices restricted to the case ofa=1. How-
ever, this is not the approximation used here. Allan modifies
the usual nonlayer Bethe approximation where the critical
temperature is given by

tanhfJ/kTcg = 1/sq − 1d, s2d

and whereq is the coordination number of the system being
approximated,q=6 in our case, by substituting forq=6 the
value of the mean coordination number for then-layered
system which forn-layered square lattices is

qave = s6n − 2d/n. s3d

This gives easy approximations for anyn. However, the ap-
proximations are less accurate than those found using my
layer BLA, giving, for example, forn=3, Tc>4.255 while
the approximation method presented here givesTc>4.159.
This should be compared to the series expansion resultsf21g,
which giveTc>3.647±0.005.

In addition to theTc values, mention needs to be made of
the values ofac. A straight-forward MFA for the both the
simple cubic lattice or the face-centered cubic lattice gives
ac=6/5. For the MFA tothese layered systems one obtains a
set of simultaneous equations which must be solved. These
are a simple generalization of Eq.s2d of f22g. Consideration
of what has been presented thus far might cause one to won-
der why there is even such a thing as anac. The author
knows of noa priori reason for such behavior. Furthermore,
seeing that for both the sc and fcc lattice theac value given
by the MFA takes on the same numerical value, it raises the
possibility that the MFA may be unable to distinguish certain
differences much as it predicts the sameTc value for both the
simple cubic lattice and the triangle lattice. When one goes
to the RFA, one sees the value ofac decrease in value, Ilk-

FIG. 1. Tc vs a for n=2-, 3-, 4-, 5-, and 6-layer systems with the
spins on both surfaces taking on values ±a. For smalla, Tc in-
creases significantly asn increases so one can easily distinguish the
n=2, 3, 4, 5, and 6 cases.
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ovic in f8g givesac=1.177, but nevertheless anac. What is
found using the layered BLA is quite different. The appear-
ance of anac value occurs only because of the scale of Fig.
1. Qualitative results of this approach are seen in Fig. 2
where a magnified view of the situation around the area that
appears to beac of Fig. 1 is presented. There is, in fact, no
ac where Tc is independent of the thickness of the layer.
Rather there is a region arounda=1.125 where one layer
system’sTc may equal that of another layer. Specifically the
Tc line for then=2 case crosses theTc line for then=3 case
at a point I will denote asa2–3 and similarly there is ana3–4,
etc. One has thatTc decreases at theak−sk+1d crossover points
ask increases, thereby moving closer to the bulkTc. Numeri-
cal estimates ofTc in the crossover region are given in Table
I for the BLA.

More accurate results are obtained through the use of the
Husimi tree approach. The results for these systems are
qualitatively the same as in the layered Bethe lattice case; in
particular there exists no singleac but rather a series of
ak−sk+1d values.Tc values are shifted lower closer to accurate
series expansion values when available. Numerical estimates
of Tc, usingn-layered Husimi trees, for the crossover region
are given in Table II.

While I know of no rigorous proof that a singleac value
cannot exist, the fact that the HTA is more accurate than the
BLA, which is more accurate than the MFA, which has been

demonstrated inf10,11,13–16g for a large variety of two-
dimensional models supports the fact that the same is likely
to be the case here forn-layer systems.

While the focus of this paper is whenaÞ1, I conclude
with some further comparisons for thea=1 case, which is
the most studied. In this case there exists a lengthy high
temperature series and therefore rather accurate estimates of
Tc. To gain some appreciation of the level of accuracy one
finds for then=3 case, in increasing order of accuracy, that
the MFA givesTc>5.414, Alan’s Bethe approximation gives
Tc>4.255, the layered BLA givesTc>4.1591, and the lay-
ered HTA using the simplest Husimi tree givesTc>4.0641.
High temperature series expansion givesTc>3.647±0.005.
For larger values ofn, similar results occur. Asn increases,
the layered system approaches presented here increase in ac-
curacy when compared to theTc values based on series ex-
pansion methods. This makes sense in that the layered sys-
tems used here are true layered systems and the
approximation is really only the approximation of the indi-
vidual layers.

Adjusting the values of the magnetic moments for both
surfaces in some cases may not be appropriate, e.g., one
surface of the film may be a free surface and the other may
be attached to some substrate causing the magnetic moment
on only one surface to differ from the bulk value. Ifa is
small then there should be no qualitative change from what

TABLE I. Tc estimates as a function ofa with spins on both
surfaces taking on the value ±a for the region ofa values where
crossover occurs. Estimates are based onn-layer Bethe lattices.

n=2 n=3 n=4 n=5 n=6

a=1.1264 4.7967 4.7966

a=1.1263 4.7959 4.7960

a=1.1247 4.7872 4.7871

a=1.1246 4.7866 4.7867

a=1.1242 4.7850 4.7850

a=1.1241 4.7846 4.7847 4.7847

a=1.1240 4.7844 4.7844

TABLE II. Tc estimates as a function ofa with spins on both
surfaces taking on the value ±a for the region ofa values where
crossover occurs. Estimates are based onn-layer Husimi lattices.

n=2 n=3 n=4 n=5

a=1.1344 4.73227 4.73218

a=1.1343 4.73144 4.73164

a=1.1323 4.72076 4.72070

a=1.1322 4.72021 4.72030

a=1.1316 4.71789 4.71781

a=1.1315 4.71749 4.71749

FIG. 2. Magnified view of Fig. 1 in the vicinity of crossover
values ofTc but showing only theTc values forn=2 ssolid lined, 3
sdotted lined, and 4sdot-dashed lined. Lines are drawn to guide the
eye.

FIG. 3. Tc vs a for n=2-, 3-, 4-, 5-, and 6-layer systems with the
spins on only one surface taking on values ±a. For small a, Tc

increases significantly asn increases so one can easily distinguish
the n=2, 3, 4, 5, and 6 cases.
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was found in the previous situation involving both surfaces,
i.e., the more layers the system has, the higherTc. Here even
if a is allowed to take on large values, the fact that only one
surface, rather than two, has the enhanced magnetic spins
means this may not be enough to produce the cross-over
point where, ifa is greater than this value, the system with
the smaller number of layers actually has the higher critical
temperature. This is, in fact, what the layered BLA has as a
result. For all values ofa the critical temperature is a mono-
tonically increasing function ofn. Tc as a function ofa and
with n=2, 3, 4, 5, and 6 is plotted in Fig. 3.

IV. CONCLUSION

In the above sections, systems of layered Bethe lattices or
Husimi trees have been used to approximateTc of n-layered,
square-lattice, Ising models. Overall the method is one more
example of many systems, examples and references given
above, which can be approximated rather successfully by this
approach. For then-layered Ising systems investigated here

the method gives a qualitatively different scenario for the
behavior ofTc than that presented by other authors. I have
tried to show that based on other successful approximations
by these general methods one must at the very least consider
that the special property of anac, at whichTc is independent
of the number of layers, may be an artifact of previous meth-
ods and not a property of the real systems.

The method is rather robust and for the above systems a
further increase in the accuracy of the approximations could
be made by considering ever bigger basic building blocks for
the layered Husimi tree case, which is something beyond the
four-site square used above. In addition since one can gen-
erate a series of ever increasingly accurate approximations
based on ever bigger basic building blocks for the tree one
can use various extrapolation techniques on this series to
gain even greater accuracy. For then=2 case this has already
been done and the estimates of the critical temperature are
amongst the most accurate availablef10g compared to five
other methods used to approximate the bilayer system.
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